Effects of Nanotube/Matrix Interface on Multi-Walled Carbon Nanotube Reinforced Polymer Mechanical Properties
Authors
Abstract:
In this paper, experimental and Finite Element Methods have been used to determine mechanical properties of nanocomposites. Standard tensile and compression samples with 0.0, 0.15, 0.25, 0.35, 0.45, and 0.55 weight fraction of Multi-Walled Carbon Nanotube (MWCNT) were prepared and tested. Nanotube weight fraction was varied to investigate the effects of nanotube weight fraction on nanocomposite mechanical properties. Mechanical properties such as: modulus of elasticity, yield strength, ultimate tensile strength, and fracture strain were determined experimentally. Experimental results showed that incorporation of carbon nanotubes improves modulus of elasticity, and yield and ultimate strengths of the epoxy resin under tension and compression. Results also showed that fracture strain decreases drastically with increasing nanotube weight fraction. Field Emission Scanning Electron Microscope (FESEM) was used to obtain images of the samples’ fracture surfaces. These images showed a good MWCNT dispersion in the matrix. Also, numerical simulations were conducted in Abaqus software. In these simulations, the effects of the interface between individual nanotubes and the outer nanotube and matrix were investigated. Two different models were used for these interfaces. Connector constraints were used in the first model and thin shells in the second model. The connector model predicted lower mechanical properties compared to the thin shell interface model. Finally, experimental and numerical results were compared and a good correlation was observed between the results.
similar resources
Mechanical properties of multi-walled carbon nanotubes reinforced polymer nanocomposites
Carbon nanotubes (CNTs ) are considered to be one of the novel reinforcement for developing advanced nanocomposites due to their outstanding thermo-mechanical properties. Multi-walled carbon nanotubes (MWCNTs ) are developed by arc discharge method. To enhance the dispersion of CNTs in polymer matrix, CNTs are modified with chemical treatment and processed by ultrasonication process. Surface ch...
full textThe Effects of Functionalized Multi-walled Carbon Nanotube on Mechanical Properties of Multi-walled Carbon Nanotube/Epoxy Composites
The mechanical properties of the multi-walled carbon nanotube (MWCNT)/epoxy composites affected by carboxyl and amino functionalized MWCNT are investigated. Tensile tests of the specimens were carried out to obtain mechanical properties of MWCNT/epoxy composites for various weight-percents (wt %) of MWCNTs. In order to properly predict the mechanical properties of MWCNT reinforced epoxy composi...
full textEffect of multi-walled carbon nanotube on mechanical and rheological properties of silane modified EPDM rubber
A novel mixing approach for achieving a good dispersion of multi-walled carbon nanotubes (MWCNTs) in ethylene- propylene diene monomer (EPDM) matrix has been investigated. In this approach EPDM was modified with vinyltrimethoxysilane (VTMS) during melt mixing. In addition the effect of MWCNT concentration on mechanical and rheological properties of modified EPDM has been studied. The formulated...
full textInvestigation of Crack Resistance in Single Walled Carbon Nanotube Reinforced Polymer Composites Based on FEM
Carbon nanotube (CNT) is considered as a new generation of material possessing superior mechanical, thermal and electrical properties. The applications of CNT, especially in composite materials, i.e. carbon nanotube reinforced polymer have received great attention and interest in recent years. To characterize the influence of CNT on the stress intensity factor of nanocomposites, three fracture ...
full textEffects of Multi-Walled Carbon Nanotubes on The Mechanical Properties of Glass/Polyester Composites
Excellent mechanical properties of carbon nanotubes (CNTs) make them outstanding candidate reinforcements to enhance mechanical properties of conventional composites. The glass/polyester composites are widely used in many industries and applications. Improving the mechanical properties of such composites with addition of CNTs can increase their applications. In this research, multi-walled carbo...
full textMechanical properties of carbon nanotube/polymer composites
The remarkable mechanical properties of carbon nanotubes, such as high elastic modulus and tensile strength, make them the most ideal and promising reinforcements in substantially enhancing the mechanical properties of resulting polymer/carbon nanotube composites. It is acknowledged that the mechanical properties of the composites are significantly influenced by interfacial interactions between...
full textMy Resources
Journal title
volume 4 issue 3
pages 211- 223
publication date 2017-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023